Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 367: 158-166, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253205

RESUMO

Mast cells (MCs) are primary effector cells involved in immediate allergic reactions. Mas-related G protein-coupled receptor-X2 (MrgX2), which is highly expressed on MCs, is involved in receptor-mediated drug-induced pseudo-anaphylaxis. Many small-molecule drugs and peptides activate MrgX2, resulting in MC activation and allergic reactions. Although small-molecule drugs can be identified using existing MrgX2 ligand-screening systems, there is still a lack of effective means to screen peptide ligands. In this study, to screen for peptide drugs, the MrgX2 high-affinity endogenous peptide ligand substance P (SP) was used as a recognition group to design a fluorescent peptide probe. Spectroscopic properties and fluorescence imaging of the probe were assessed. The probe was then used to screen for MrgX2 agonists among peptide antibiotics. In addition, the effects of peptide antibiotics on MrgX2 activation were investigated in vivo and in vitro. The environment-sensitive property of the probe was revealed by the dramatic increase in fluorescence intensity after binding to the hydrophobic ligand-binding domain of MrgX2. Based on these characteristics, it can be used for in situ selective visualization of MrgX2 in live cells. The probe was used to screen ten types of peptide antibiotics, and we found that caspofungin and bacitracin could compete with the probe and are hence potential ligands of MrgX2. Pharmacological experiments confirmed this hypothesis; caspofungin and bacitracin activated MCs via MrgX2 in vitro and induced local anaphylaxis in mice. Our research can be expected to provide new ideas for screening MrgX2 peptide ligands and reveal the mechanisms of adverse reactions caused by peptide drugs, thereby laying the foundation for improving their clinical safety.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Camundongos , Animais , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/metabolismo , Ligantes , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Caspofungina/metabolismo , Caspofungina/farmacologia , Peptídeos/farmacologia , Antibacterianos/farmacologia , Mastócitos/metabolismo , Degranulação Celular/fisiologia
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901728

RESUMO

In recent years, invasive fungal infections have emerged as a common source of infections in immunosuppressed patients. All fungal cells are surrounded by a cell wall that is essential for cell integrity and survival. It prevents cell death and lysis resulting from high internal turgor pressure. Since the cell wall is not present in animal cells, it is an ideal target for selective invasive fungal infection treatments. The antifungal family known as echinocandins, which specifically inhibit the synthesis of the cell wall ß(13)glucan, has been established as an alternative treatment for mycoses. To explore the mechanism of action of these antifungals, we analyzed the cell morphology and glucan synthases localization in Schizosaccharomyces pombe cells during the initial times of growth in the presence of the echinocandin drug caspofungin. S. pombe are rod-shaped cells that grow at the poles and divide by a central division septum. The cell wall and septum are formed by different glucans, which are synthesized by four essential glucan synthases: Bgs1, Bgs3, Bgs4, and Ags1. Thus, S. pombe is not only a perfect model for studying the synthesis of the fungal ß(1-3)glucan, but also it is ideal for examining the mechanisms of action and resistance of cell wall antifungals. Herein, we examined the cells in a drug susceptibility test in the presence of either lethal or sublethal concentrations of caspofungin, finding that exposure to the drug for long periods at high concentrations (>10 µg/mL) induced cell growth arrest and the formation of rounded, swollen, and dead cells, whereas low concentrations (<10 µg/mL) permitted cell growth with a mild effect on cell morphology. Interestingly, short-term treatments with either high or low concentrations of the drug induced effects contrary to those observed in the susceptibility tests. Thus, low drug concentrations induced a cell death phenotype that was not observed at high drug concentrations, which caused transient fungistatic cell growth arrest. After 3 h, high concentrations of the drug caused the following: (i) a decrease in the GFP-Bgs1 fluorescence level; (ii) altered locations of Bgs3, Bgs4, and Ags1; and (iii) a simultaneous accumulation of cells with calcofluor-stained incomplete septa, which at longer times resulted in septation uncoupling from plasma membrane ingression. The incomplete septa revealed with calcofluor were found to be complete when observed via the membrane-associated GFP-Bgs or Ags1-GFP. Finally, we found that the accumulation of incomplete septa depended on Pmk1, the last kinase of the cell wall integrity pathway.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Antifúngicos/metabolismo , Caspofungina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Parede Celular/metabolismo , Glucanos/metabolismo , Glucosiltransferases/metabolismo , Equinocandinas
3.
Appl Environ Microbiol ; 89(2): e0123522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656025

RESUMO

CHY1 is a zinc finger protein unique to microorganisms that was found to regulate polarized tip growth in Fusarium graminearum, an important pathogen of wheat and barley. To further characterize its functions, in this study we identified CHY1-interacting proteins by affinity purification and selected UDP-galactofuranose (Galf) mutase (UGMA) for detailed characterization, because UGMA and UDP-Galf are unique to fungi and bacteria and absent in plants and animals. The interaction between CHY1 and UGMA was confirmed by yeast two-hybrid assays. Deletion of UGMA in F. graminearum resulted in significant defects in vegetative growth, reproduction, cell wall integrity, and pathogenicity. Infection with the ΔugmA mutant was restricted to the inoculated floret, and no vomitoxin was detected in kernels inoculated with the ΔugmA strain. Compared to the wild type, the ΔugmA mutant produced wide, highly branched hyphae with thick walls, as visualized by transmission electron microscopy. UGMA tagged with green fluorescent protein (GFP) mainly localized to the cytoplasm, consistent with the synthesis of Galf in the cytoplasm. The Δchy1 mutant was more sensitive, while the ΔugmA mutant was more tolerant, to cell wall-degrading enzymes. The growth of the ΔugmA mutant nearly ceased upon caspofungin treatment. More interestingly, nocodazole treatment of the ΔugmA strain attenuated its highly branched morphology, while caspofungin inhibited the degree of the twisted Δchy1 mycelia, indicating that CHY1 and UGMA probably have opposite effects on cell wall architecture. In conclusion, UGMA is an important pathogenic factor that is specific to fungi and bacteria and required for cell wall architecture, radial growth, and caspofungin tolerance, and it appears to be a promising target for antifungal agent development. IMPORTANCE The long-term use of chemical pesticides has had increasingly negative impacts on the ecological environment and human health. Low-toxicity, high-efficiency and environmentally friendly alternative pesticides are of great significance for maintaining the sustainable development of agriculture and human and environmental health. Using fungus- or microbe-specific genes as candidate targets provides a good foundation for the development of low-toxicity, environmentally friendly pesticides. In this study, we characterized a fungus- and bacterium-specific UDP-galactopyranose mutase gene, ugmA, that contributes to the synthesis of the cell wall component Galf and is required for vegetative growth, cell wall integrity, deoxynivalenol (DON) production, and pathogenicity in F. graminearum. The ugmA deletion mutant exhibited increased sensitivity to caspofungin. These results demonstrate the functional importance of UGMA in F. graminearum, and its absence from mammals and higher plants constitutes a considerable advantage as a low-toxicity target for the development of new anti-Fusarium agents.


Assuntos
Transferases Intramoleculares , Humanos , Caspofungina/farmacologia , Caspofungina/metabolismo , Virulência , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas , Esporos Fúngicos
4.
Res Microbiol ; 174(1-2): 103993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36184018

RESUMO

Aspergillus fumigatus and Pseudomonas aeruginosa biofilms are associated to the recalcitrant and persistent infections due to resistance to antimicrobials. Here, we evaluated the effect of antimicrobials on single and mixed biofilms of A. fumigatus and P. aeruginosa (carbapenem-resistant and susceptible strains) determining total biomass by crystal violet, cell viability by colony forming unit count, and microscopy. Polymyxin B (PMB) had the best action on P. aeruginosa biofilms inhibiting the biomass (2-4 µg/mL) and it was efficient reducing the viable bacterial cells. Amphotericin B (AMB) and caspofungin (CAS) were the best antifungal at inhibiting A. fumigatus biofilms and reducing fungal viability at concentration ≥1 and ≥ 16 µg/mL, respectively. In addition, CAS was able to significantly reduce P. aeruginosa viability in mixed biofilms. CAS combined with PMB also significantly reduced the mixed biofilm biomass and fungal and bacterial viability mainly against carbapenem-resistant bacterium. The light and fluorescence microscopy showed alterations on hyphae morphology and confirmed the increase of fungal and bacterial death cells after combined therapy of mixed biofilms. Taken together, our work showed that CAS alone and its combination with PMB showed better potential in reducing mixed biofilm biomass and fungal and bacterial viability, even for the carbapenem-resistant P. aeruginosa strain.


Assuntos
Anti-Infecciosos , Polimixina B , Caspofungina/farmacologia , Caspofungina/metabolismo , Polimixina B/farmacologia , Polimixina B/metabolismo , Aspergillus fumigatus , Pseudomonas aeruginosa , Anti-Infecciosos/farmacologia , Biofilmes , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Testes de Sensibilidade Microbiana
5.
Microbiol Spectr ; 10(5): e0051922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094204

RESUMO

Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting ß-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces ß-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.


Assuntos
Antifúngicos , Aspergillus fumigatus , Caspofungina/farmacologia , Caspofungina/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Equinocandinas/farmacologia , Equinocandinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Azóis/metabolismo , Azóis/farmacologia , Quitina , Genômica , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia
6.
Microbiol Spectr ; 10(2): e0043922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377230

RESUMO

Cryptococcus neoformans is a major fungal pathogen that often causes life-threatening meningitis in immunocompromised populations. This yeast pathogen is highly resistant to the echinocandin drug caspofungin. Previous studies showed that Cryptococcus lipid translocase (flippase) is required for the caspofungin resistance of that fungus. Mutants with a deleted subunit of lipid flippase, Cdc50, showed increased sensitivity to caspofungin. Here we designed an antifungal peptide targeting the P4-ATPase function. We synthesized stable peptides based on the Cdc50 loop region to identify peptides that can sensitize caspofungin by blocking flippase function and found that myristylated peptides based on the "AS15 sequence" was effective at high concentrations. A modified peptide, "AW9-Ma" showed a MIC of 64 µg/mL against H99 wild type and a fractional inhibitory concentration (FIC) index value of 0.5 when used in combination with caspofungin. Most notably, in the presence of the AW9-Ma peptide, C. neoformans wild type was highly sensitive to caspofungin with a MIC of 4 µg/mL, the same as the cdc50Δ mutant. Further assays with flow cytometry showed inhibition of the lipid flippase enzyme activity and significant accumulation of phosphatidylserine on the cell membrane surface. Using a fluorescently labeled peptide, we confirmed that the peptide co-localized with mCherry-tagged P4-ATPase protein Apt1 in C. neoformans. Structure-activity relationship studies of the AW9 sequence showed that two lysine residues on the peptide are likely responsible for the interaction with the P4-ATPase, hence critical for its antifungal activity. IMPORTANCE The authors have developed a lead compound peptide antifungal drug targeting a protein from the organism Cryptococcus neoformans. Binding of the drug to the target fungal protein causes charged lipid molecules to be retained on the surface. This peptide works in synergy with the existing antifungal drug caspofungin. Echinocandin drugs like caspofungin are one of the few classes of existing antifungals. Due to the high concentrations needed, caspofungin is rarely used to treat C. neoformans infections. The authors believe that their new compound provides a way to lower the concentration of caspofungin needed to treat such infections, thus opening the possibility for greater utility of these antifungal.


Assuntos
Criptococose , Cryptococcus neoformans , Adenosina Trifosfatases/metabolismo , Antifúngicos/farmacologia , Caspofungina/metabolismo , Caspofungina/farmacologia , Criptococose/tratamento farmacológico , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Equinocandinas/metabolismo , Equinocandinas/farmacologia , Chumbo/metabolismo , Chumbo/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo , Peptídeos/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-34847516

RESUMO

Treatment of invasive fungal infections with Caspofungin is used as the first-line antifungal agents. The minimum inhibitory concentration value is a test which indicates the degree of sensitivity of a strain regarding a drug. However, no value of minimum inhibitory concentration for caspofungin is available because very variable value is obtained. In this work, we study the link with the adsorption phenomenon of CSF previously described in literature and the lack of minimum inhibitory concentration value. A systematic study of the impact of different parameters on CSF adsorption is reported. The effect of the nature of container material, the aqueous solution pH and the organic solvent proportion was studied. In addition, the possibility of using a coating agent to minimize the adsorption was assayed and evaluated. Results obtained showed the importance of the material used during the manipulation of CSF. The use of acidic pH aqueous solution or the addition of acetonitrile or methanol proportions (50 % and 70 %, respectively) were found efficient to avoid adsorption of CSF on glassware material, which is the relevant strategy for analytical samples of caspofungin. The treatment of HPLC glass vials and 96-well plates with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane reduced the adsorption. The significant adsorption observed in this work especially with plastic materials, questions the results obtained before in different assays and explained the absence of MIC value.


Assuntos
Antifúngicos , Caspofungina , Adsorção , Antifúngicos/análise , Antifúngicos/química , Antifúngicos/metabolismo , Caspofungina/análise , Caspofungina/química , Caspofungina/metabolismo , Cromatografia Líquida de Alta Pressão/instrumentação , Vidro/química , Testes de Sensibilidade Microbiana , Plásticos/química , Plásticos/metabolismo
8.
Pol J Microbiol ; 67(4): 463-470, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550232

RESUMO

Candidiasis is the most common opportunistic yeast infection, with Candida albicans as a paramount causative species. (1,3)- ß -D-glucan is one of the three main targets of clinically available antifungal agents used to treat Candida infections. It is one of the most abundant fungal cell wall components. Echinocandins represent the newest class of antifungals affecting cell wall biosynthesis through non-competitive inhibition of (1,3)- ß -D-glucan synthase. Therefore, treatment with echinocandins causes defects in fungal cell integrity. In the present study, similar activity of emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has been revealed. Many reports have already shown the antifungal potential of this pleiotropic molecule, including its activity against C. albicans . The aim of this report was to evaluate the activity of emodin towards a new molecular target, i.e. (1,3)- ß -D-glucan synthase isolated from Candida cells. Moreover, given the identical mechanism of the activity of both molecules, interaction of emodin with caspofungin was determined. The study revealed that emodin reduced (1,3)- ß -D-glucan synthase activity and increased cell wall damage, which was evidenced by both a sorbitol protection assay and an aniline blue staining assay. Furthermore, the synergy testing method showed mainly independence of the action of both tested antifungal agents, i.e. emodin and caspofungin used in combination.Candidiasis is the most common opportunistic yeast infection, with Candida albicans as a paramount causative species. (1,3)-ß-D-glucan is one of the three main targets of clinically available antifungal agents used to treat Candida infections. It is one of the most abundant fungal cell wall components. Echinocandins represent the newest class of antifungals affecting cell wall biosynthesis through non-competitive inhibition of (1,3)-ß-D-glucan synthase. Therefore, treatment with echinocandins causes defects in fungal cell integrity. In the present study, similar activity of emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has been revealed. Many reports have already shown the antifungal potential of this pleiotropic molecule, including its activity against C. albicans. The aim of this report was to evaluate the activity of emodin towards a new molecular target, i.e. (1,3)-ß-D-glucan synthase isolated from Candida cells. Moreover, given the identical mechanism of the activity of both molecules, interaction of emodin with caspofungin was determined. The study revealed that emodin reduced (1,3)-ß-D-glucan synthase activity and increased cell wall damage, which was evidenced by both a sorbitol protection assay and an aniline blue staining assay. Furthermore, the synergy testing method showed mainly independence of the action of both tested antifungal agents, i.e. emodin and caspofungin used in combination.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Caspofungina/metabolismo , Emodina/farmacologia , Glucosiltransferases/antagonistas & inibidores , Candida albicans/enzimologia , Candidíase/tratamento farmacológico , Parede Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...